(12)

United States Patent
McCorkendale et al.

US009450960B1

US 9,450,960 B1
Sep. 20, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

")

@
(22)
(1)
(52)

(58)

(56)

2003/0088680 Al

VIRTUAL MACHINE FILE SYSTEM
RESTRICTION SYSTEM AND METHOD

Inventors: Bruce McCorkendale, Manhattan
Beach, CA (US); William E. Sobel,
Jamul, CA (US)

Assignee: Symantec Corporation, Mountain
View, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1548 days.

Appl. No.: 12/265,157

Filed: Nov. 5, 2008

Int. C1.

HO4L 29/06 (2006.01)

U.S. CL

CPC o HO4L 63/10 (2013.01)

Field of Classification Search

CPC GOGF 21/52; GOGF 21/56; GOGF 21/566;
GOG6F 2221/2149; HO4L 63/10

USPC e 726/3

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS

5,361,375 A 11/1994 Ogi

6,075,938 A 6/2000 Bugnion et al.

7,398,553 B1* 7/2008 Li .ooooviiiiiiiiiiiieiiennn, 726/22
7,509,680 B1* 3/2009 Sallamocooovrnen. 726/24
7,725941 B1* 5/2010 Pavlyushchik 726/24
7,765,400 B2* 7/2010 Costea et al. 713/165
7,765,544 B2* 7/2010 Brickell et al. 718/1
7,844,744 B2* 11/2010 Abercrombie et al. 709/250

5/2003 Nachenberg et al.

File system
restriction
process 600

Unknown malicious code
outbreak ?

2006/0021029 Al 1/2006 Brickell et al.

2006/0136720 Al 6/2006 Armstrong et al.

2006/0206658 Al 9/2006 Hendel et al.

2006/0236392 Al* 10/2006 Thomas et al. 726/23
2007/0006304 Al* 1/2007 Kramer et al. 726/22
2007/0050767 Al* 3/2007 Grobman et al. 718/1
2007/0089111 Al 4/2007 Robinson et al.

2007/0174897 Al 7/2007 Rothman et al.

2007/0198243 Al 82007 Leis et al.

2007/0288228 Al 12/2007 Taillefer et al.

2008/0027891 Al* 1/2008 Repasi et al. 706/52
2008/0127346 Al* 5/2008 Oh et al. 726/23
2008/0184218 Al* 7/2008 Largman et al. . 717/168
2009/0276774 Al* 11/2009 Kinoshitaccoveene. 718/1

OTHER PUBLICATIONS

“BIOS”, p. 1 [online]. Retrieved on Feb. 18, 2008 from the Internet:
<URL:http://en.wikipedia.org/wiki/BIOS>. No author provided.
“Booting”, pp. 1-8 [online]. Retrieved on Mar. 12, 2008 from the
Internet: <URL:http://en.wikipedia.org/wiki/Booting>. No author
provided.

“Device Node”, pp. 1-3 [online]. Retrieved on Mar. 12, 2008 from
the Internet: <URL:http://en.wikipedia.org/wiki/Block device>.
No author provided.

(Continued)

Primary Examiner — William Goodchild
(74) Attorney, Agent, or Firm — Wilmer Cutler Pickering
Hale and Dorr LLP

(57) ABSTRACT

A method includes creating a virtual machine including a
remote file system, a file system service, and a security
application. Access to the remote file system is restricted
with the security application upon an unknown malicious
code outbreak. The more that is known about the threat, the
more precise are the restrictions placed upon the file system
thus reducing the impact on users of the file system to an
absolute minimum.

6 Claims, 7 Drawing Sheets

Determine unknown
malicious code
characteristics.

606

Restrict access to
files having attributes
matching unknown
malicious code
characteristics.

608

l

Restrict writing of
files having attributes
matching unknown
malicious code
characteristics.

610

612

US 9,450,960 B1
Page 2

(56) References Cited

OTHER PUBLICATIONS

“File System”, pp. 1-9 [online]. Retrieved on Mar. 12, 2008 from the
<URL:http://en.wikipedia.org/wiki/File__system>. No
author provided.

Internet:

“Hypervisor”, pp. 1-5 [online]. Retrieved on Mar. 12, 2008 from the
Internet: <URL:http://en.wikipedia.org/wiki/Hypervisor>. No
author provided.

“Network booting”, p. 1 [online]. Retrieved on Mar. 12, 2008 from
the Internet: <URL:http://en.wikipedia.org/wiki/Network boot-
ing>. No author provided.

“Preboot Execution Environment”, pp. 1-4 [online]. Retrieved on
Mar. 12, 2008 from the Internet: <URL:http://en. wikipedia.org/
wiki/Preboot_ Execution_ Environment>. No author provided.

“Preboot Execution Environment (PXE) Specification”, Version
2.1, Sep. 20, 1999, Intel Corporation, pp. 1-101. No author pro-
vided.

“Single-instance storage”, pp. 1-2 [online]. Retrieved on Mar. 18,
2008 from the Internet: <URL:http://en.wikipediea.org/wiki/
Single instance storage>. No author provided.

“Uniform Naming Convention”, p. 1 [online]. Retrieved on Feb. 18,
2008 from the Internet: <URL :http://en.wikipedia.org/wiki/ Path__
%28computing%29>. No author provided.

“Virtual machine”, pp. 1-7 [online]. Retrieved on Mar. 12, 2008
from the Internet: <URL:http://en.wikipedia.org/wiki/Virtual _ma-
chine>. No author provided.

Sobel et al.,, “Virtual Machine File System Content Protection
System and Method”, U.S. Appl. No. 12/059,622, filed Mar. 31,
2008.

Sobel et al., “Simulating PXE Booting for Virtualized Machines”,
U.S. Appl. No. 12/059,817, filed Mar. 31, 2008.

* cited by examiner

U.S. Patent Sep. 20, 2016 Sheet 1 of 7 US 9,450,960 B1
Host Computer System 102
L FIG. 1
VM file system
content protection Unknown
CPU | | |application 106 malicious code
108 [T outbreak
reporting server
- system 150
VM architecture 140
Unknown
malicious code
source server
system 160
I/O Interface 110
100
Key- Printer Mouse I/(_)
Board Device
120 118
116 123
\
Display Device 132 Network
. . = Interface 138
Display Device -
122
Processor |
134

Server System 130

Memory 136

U.S. Patent Sep. 20, 2016 Sheet 2 of 7 US 9,450,960 B1

Virtual Machine 202

User Mode 204

Kernel Mode 206

Security application 208

File system 210

Block device 212 FIG. 2
140
Virtual Machine 220
User Mode 204A
driver 222

Virtual Machine 230

Kernel Mode 206A
UNC file system - . . .
A Virtual Machine Monitor 214

File system

service 232 “1

Security application 234

File system 210A VM 220A VM 220B |esereen VM 220n

Block device 212A

U.S. Patent Sep. 20, 2016 Sheet 3 of 7 US 9,450,960 B1

302

FIG. 3

Virtual machine @
1/O redirection

process 300 304 <

\

No

Virtual machine booting?

306

Redirect booting to
remote file system

308

\ N\

Cause all I/O to be
redirected to remote
file system

310
400
\ BIOS 402 =
pa®
A
Boot block 404 -
Z
Loader 406 |:§
UNC Filter driver 222 <

FIG. 4

U.S. Patent Sep. 20, 2016 Sheet 4 of 7 US 9,450,960 B1

- FIG. 5

Virtual machine @
protection

process 500 504

virtual machine?

No ,
ile system change allowed?

510
508 /

\ ‘
Y Allow file system

Take protective change request.
action

512
e

_—@<

U.S. Patent

File system
restriction
process 600

\

Sep. 20, 2016

Sheet 5 of 7

US 9,450,960 B1

FIG. 6

outbreak ?

Unknown malictous code

Determine unknown
malicious code
characteristics.

A 4

Restrict access to
files having attributes
matching unknown
malicious code

characteristics.

A

Restrict writing of
files having attributes
matching unknown
malicious code
characteristics.

612

606

608

610

U.S. Patent Sep. 20, 2016 Sheet 6 of 7 US 9,450,960 B1

o FIG.7

File access @
restriction

process 700 704

File access request?

Yes Access restricted?
712
708 /
| ,,
A
Take protective Allow access
action

710

Exit |«

U.S. Patent Sep. 20, 2016 Sheet 7 of 7 US 9,450,960 B1

- FIG. 8

File write
restriction
process 800

\

804

File write request?

Yes

write restricted?

812
808 /
\ A 4
¥ — Allow write
Take protective
action

810

Exit je

US 9,450,960 B1

1
VIRTUAL MACHINE FILE SYSTEM
RESTRICTION SYSTEM AND METHOD

BACKGROUND
Field of the Invention

The present invention relates to computer system security.
More particularly, the present invention relates to a system
and method of providing security to virtual machines.

Description of the Related Art

A virtual machine (VM) is a software implementation of
a computer that executes programs like a real physical
computer. A system virtual machine provides a complete
system platform which supports the execution of a complete
operating system such as a Windows® operating system.

It is not uncommon to have several virtual machines
running on a single real physical computer. Each of these
virtual machines typically includes a security service, e.g.,
an antivirus scanner, as does any real computer. However,
providing a separate security service for each virtual
machine is overhead intensive.

Malicious code often resides in executable computer code
and is activated when the computer code is executed.
Malicious code can spread rapidly throughout computer
networks during “outbreaks” of the malicious code.
Unknown malicious code can contaminate hundreds of
thousands of computers worldwide in a few hours or days
and cause enormous damage.

Often, reactive technologies, e.g., anti-virus scanning
software, are used to scan computer files to detect malicious
code that is known and has been analyzed. The reactive
anti-virus software often fails to catch or prevent unknown
malicious code.

SUMMARY OF THE INVENTION

In accordance with one embodiment, a method includes
creating a virtual machine including a remote file system, a
file system service, and a security application. Access to the
remote file system is restricted with the security application
upon an unknown malicious code outbreak.

The security application is insinuated at the chokepoint
provided by the virtual machine to changes to the file
system. This allows the security application to inspect
changes to the file system, e.g., access of files on the file
system as well as writing of files to the file system, from the
shared and controlled environment of the virtual machine.
The protection of the file system provided by the security
application is absolute. Accordingly, the security application
facilitates a simple, convenient, yet extremely secure solu-
tion for restricting access to files and writing of files to the
file system.

The security application enables reliable and precise
protection of the file system from an emerging threat during
the window between the release of the threat and the
delivery of the virus signature for the threat. More particu-
larly, the security application restricts access to and writing
of files to the file system having attributes matching char-
acteristics of the threat. The more that is known about the
threat, the more precise are the restrictions placed upon the
file system thus reducing the impact on users of the file
system to an absolute minimum.

Embodiments are best understood by reference to the
following detailed description when read in conjunction
with the accompanying drawings.

10

20

25

30

35

40

45

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a client-server system that includes
a virtual machine file system content protection application
executing on a host computer system in accordance with one
embodiment;

FIG. 2 is a block diagram of a virtual machine architecture
of FIG. 1 in accordance with one embodiment;

FIG. 3 is a flow diagram of a virtual machine input/output
(I/O) redirection process in accordance with one embodi-
ment;

FIG. 4 is a block diagram of a boot sequence used in a
REDIRECT BOOTING TO REMOTE FILE SYSTEM
OPERATION of the virtual machine I/O redirection process
of FIG. 3 in accordance with one embodiment;

FIG. 5 is a flow diagram of a virtual machine protection
process in accordance with one embodiment;

FIG. 6 is a flow diagram of a file system restriction
process in accordance with one embodiment;

FIG. 7 is a file access restriction process in accordance
with one embodiment; and

FIG. 8 is a file write restriction process in accordance with
one embodiment.

Common reference numerals are used throughout the
drawings and detailed description to indicate like elements.

DETAILED DESCRIPTION

As an overview, in accordance with one embodiment,
referring to FIG. 2, a method includes creating a virtual
machine 230 including a remote file system 210A, a file
system service 232, and a security application 234. Access
to remote file system 210A is restricted with security appli-
cation 234 upon an unknown malicious code outbreak.

Security application 234 is insinuated at the chokepoint
provided by virtual machine 230 to changes to file system
210A. This allows security application 234 to inspect
changes to file system 210A, e.g., access of files on file
system 210A as well as writing of files to file system 210A,
from the shared and controlled environment of virtual
machine 230. The protection of file system 210A provided
by security application 234 is absolute. Accordingly, secu-
rity application 234 facilitates a simple, convenient, yet
extremely secure solution for restricting access to files and
writing of files to file system 210A.

Security application 234 enables reliable and precise
protection of file system 210A from an emerging threat
during the window between the release of the threat and the
delivery of the virus signature for the threat. More particu-
larly, security application 234 restricts access to and writing
of files to file system 210A having attributes matching
characteristics of the threat. The more that is known about
the threat, the more precise are the restrictions placed upon
file system 210A thus reducing the impact on users of file
system 210A to an absolute minimum.

Now in more detail, FIG. 1 is a diagram of a client-server
system 100 that includes a virtual machine file system
content protection application 106 executing on a host
computer system 102 in accordance with one embodiment.
Host computer system 102, sometimes called a client or user
device, typically includes a central processing unit (CPU)
108, hereinafter processor 108, an input output (I/0) inter-
face 110, and a memory 114.

Host computer system 102 may further include standard
devices like a keyboard 116, a mouse 118, a printer 120, and
a display device 122, as well as, one or more standard
input/output (I/0) devices 123, such as a compact disk (CD)

US 9,450,960 B1

3

or DVD drive, floppy disk drive, or other digital or wave-
form port for inputting data to and outputting data from host
computer system 102. In one embodiment, virtual machine
file system content protection application 106 is loaded into
host computer system 102 via I/O device 123, such as from
a CD, DVD or floppy disk containing virtual machine file
system content protection application 106.

Host computer system 102 is coupled to a server system
130 of client-server system 100 by a network 124. Server
system 130 typically includes a display device 132, a
processor 134, a memory 136, and a network interface 138.
Server system 130 may further include standard devices like
a keyboard, a mouse, a printer, and an /O device(s). The
various hardware components of server system 130 are not
illustrated to avoid detracting from the principles of this
embodiment.

Further, host computer system 102 is also coupled to an
unknown malicious code outbreak reporting server system
150 and an unknown malicious code source server system
160 by network 124. In one embodiment, unknown mali-
cious code outbreak reporting server system 150 and
unknown malicious code source server system 160 are
similar to host computer system 102 and/or server system
130, for example, include a central processing unit, an input
output (I/O) interface, and a memory.

Unknown malicious code outbreak reporting server sys-
tem 150 and unknown malicious code source server system
160 may further include standard devices like a keyboard, a
mouse, a printer, a display device and an I/O device(s). The
various hardware components of unknown malicious code
outbreak reporting server system 150 and unknown mali-
cious code source server system 160 are not illustrated to
avoid detracting from the principles of this embodiment.

Network 124 can be any network or network system that
is of interest to a user. In various embodiments, network
interface 138 and 1/O interface 110 include analog modems,
digital modems, or a network interface card.

Virtual machine file system content protection application
106 is stored in memory 114 of host computer system 102
and executed on host computer system 102. The particular
type of and configuration of host computer system 102,
server system 130, unknown malicious code outbreak
reporting server system 150, unknown malicious code
source server system 160, i.e., real physical computer sys-
tems, are not essential to this embodiment.

Further, host computer system 102 includes a virtual
machine architecture 140 that includes at least one virtual
machine, hereinafter referred to as virtual machines, and a
virtual machine monitor that manages the virtual machines
as described in greater detail below in reference to FIG. 2.

FIG. 2 is a block diagram of virtual machine architecture
140 of FIG. 1 in accordance with one embodiment. Refer-
ring now to FIG. 2, virtual machine architecture 140
includes virtual machines 202, 220, 230 and a virtual
machine monitor 214.

Virtual machine (VM) 202, e.g., a system virtual machine,
is a software implementation of a computer that executes
programs like a real computer and provides a complete
system platform which supports the execution of a complete
operating system such as a Windows® operating system.

In one embodiment, virtual machine 202 includes a page
based virtual memory system that uses pages, sometimes
called memory areas. For example, Windows® operating
systems provide page-based virtual memory management
schemes that permit programs to realize a virtual memory
address space. When the computer system processor is
running in virtual memory mode, all addresses are assumed

10

15

20

25

30

35

40

45

50

55

60

65

4

to be virtual addresses and are translated, or mapped, to
physical addresses in main memory each time the processor
executes a new instruction to access memory.

Conventionally, the virtual memory address space is
divided into two parts: a lower user address space, also
referred to as user mode address space or ring 3, available
for use by a program; and, a high system address space, also
referred to as kernel address space or ring 0, reserved for use
by the operating system.

To protect the integrity of the operating system code and
other kernel address space code and data structures from
errant or malicious programs and to provide efficient system
security (user rights management), Windows® operating
systems separate code executing in the user address space,
i.e., user mode, from code executing in the kernel address
space, i.e., kernel mode. User mode code typically does not
have direct access to kernel mode code and has restricted
access to computer system resources and hardware.

To utilize kernel mode code functionalities, such as access
to disk drives and network connections, user mode programs
utilize system calls that interface between the user mode and
kernel mode functions.

Accordingly, virtual machine 202 includes a user mode
204 and a kernel mode 206. Kernel mode 206 includes a
security application 208, a file system 210, and a block
device 212.

Security application 208 provides security for virtual
machine 202. Illustratively, security application 208
includes an antivirus scanner for scanning code, e.g., files in
file system 210, for malicious code. In one embodiment,
malicious code is defined as any computer program, module,
set of modules, or code that enters a computer system
without an authorized user’s knowledge and/or without an
authorized user’s consent.

File system 210 is a system for storing and organizing
computer files and the data they contain to make it easy to
find, access and store them. In one embodiment, file system
210 is designed for the storage of files on a data storage
device, such as a hard disk drive of host computer system
102. In one embodiment, file system 210 is a New Tech-
nology File System (NTFS) file system although other file
systems can be used.

File system 210 utilizes block device 212. Block device
212 handles reading and writing of blocks of data, e.g., to the
hard disk drive or other storage medium of host computer
system 102, as directed by file system 210.

Generally, security application 208 resides between file
system 210 and programs on virtual machine 202, e.g., user
mode programs in user mode 204 and drivers in kernel mode
206, that access file system 210. In this manner, security
application 208 intercepts file system exchanges with file
system 210, evaluates the file system exchanges to deter-
mine whether they are legitimate or malicious, and takes
appropriate action, e.g., allows a valid file system exchange
and takes protective action when a file system exchange is
malicious.

However, security application 208 is susceptible to decep-
tion by malicious code executing on virtual machine 202.
More particularly, if the malicious code has the same or
greater privileges than security application 208, it is possible
for the malicious code to circumvent security application
208 to directly access file system 210.

Virtual machine 202 is similar to a conventional virtual
machine and is set forth herein to illustrate how security
application 208 within virtual machine 202 can be circum-
vented by malicious code. Further, a plurality of virtual
machines 202 executing simultaneously on host computer

US 9,450,960 B1

5

system 102 would each require a security application 208
and thus would be overhead intensive. Accordingly,
although virtual machine architecture 140 includes virtual
machine 202 for the purpose of illustrating a conventional
virtual machine structure and the deficiencies thereof, in
other embodiments, virtual machine architecture 140 would
not include virtual machine 202.

Virtual machine architecture 140 further includes virtual
machines 220, 230 in accordance with one embodiment.
Virtual machine 220 includes a user mode 204A and a kernel
mode 206A in a manner similar to user mode 204 and kernel
mode 206 of virtual machine 202 as described above, the
discussion of which is herein incorporated by reference.
However, in accordance with this embodiment, kernel mode
206A includes a Uniform Naming Convention (UNC) file
system driver 222, sometimes called a redirector, the func-
tion of which is discussed in detail below.

Virtual machine 230 includes a file system service 232, a
security application 234, a file system 210A, and a block
device 212A. Security application 234 provides security for
virtual machine 230. Illustratively, security application 234
includes an antivirus scanner for scanning code, e.g., files in
file system 210A, for known malicious code, or autoprotect
function for protecting file system 210A, e.g., rolling back
the state of file system 210A. In one embodiment, security
application 234 includes a file access/writing restriction
module for restricting access to and writing of files to file
system 210A during an unknown malicious code outbreak as
discussed in greater detail below with reference to FIGS. 6,
7, and 8.

File system 210A, sometimes called a remote file system,
is a system for storing and organizing computer files and the
data they contain to make it easy to find, access and store
them. In one embodiment, file system 210A is designed for
the storage of files on a data storage device, such as a hard
disk drive of host computer system 102. In one embodiment,
file system 210A is a NTFS file system although is another
file system in another embodiment.

File system 210A utilizes block device 212A. Block
device 212A handles reading and writing of blocks of data,
e.g., to the hard disk drive or other storage medium of host
computer system 102 as directed by file system 210A.

Virtual machine 230, sometimes called a security parti-
tion, is a remote file system for virtual machine 220. More
particularly, UNC file system driver 222 and file system
service 232 provide a file system interface for remote access
of virtual machine 230 from virtual machine 220, e.g., an
operating system executing in virtual machine 220, and files
of file system 210A of virtual machine 230. Although
various actions are described for virtual machines, in light of
this disclosure, those of skill in the art will understand that
the actions are for operating systems executing on the virtual
machines. [llustratively, virtual machine 220 and/or virtual
machine 230 is a virtualization of a Windows® based server.

Generally, file system service 232, sometimes called a
shim, is a complimentary interface to UNC file system driver
222, i.e., works in conjunction with UNC file system driver
222 to provide a file system interface for remote access of
virtual machine 230 from virtual machine 220.

To illustrate, virtual machine monitor 214, sometimes
called a virtual machine manager, or VMM, is a virtualiza-
tion platform that allows multiple virtual machines such as
virtual machines 202, 220, 230 to run on host computer
system 102 at the same time. Virtual machine monitors
similar to virtual machine monitor 214 will be understood by

20

40

45

6

those of skill in the art in light of this disclosure and only the
relevant functionality of virtual machine monitor 214 is
described herein.

Typically, there is a specific distinction between a virtual
machine monitor and a hypervisor. The hypervisor handles
only the basic virtualization of the lowest level machine
resources, such as the memory management unit (MMU),
CPU privilege level states, and dispatching of “Hyper-
Calls”. In contrast, the virtual machine monitor handles the
higher level support of virtual machines such as provision-
ing the virtual machines, e.g., creating, starting, and stop-
ping the virtual machines, scheduling virtual machine time
slices and priorities, virtualizing devices, servicing Hyper-
Call requests dispatched by the hypervisor, and so forth.
Further, the functions of the hypervisor and virtual machine
monitor can be combined into a monolithic hypervisor.
Accordingly, although virtual machine monitor 214 is set
forth as having specific functions herein, in light of this
disclosure, it is to be understood that virtual machine moni-
tor 214 can also support functions of a hypervisor and/or a
monolithic hypervisor in other embodiments.

Virtual machine monitor 214 has a higher privilege level
than virtual machines 202, 220, 230 allowing virtual
machine monitor 214 to manage virtual machines 202, 220,
230. More particularly, any interactions between virtual
machines 202, 220, 230 are through, or authorized by, virtual
machine monitor 214. The requirement that any interaction
between virtual machines 202, 220, 230 occur through, or
with permission from, virtual machine monitor 214 is
enforced in hardware, e.g., by processor 108, and thus is a
very secure requirement.

Virtual machine 220 thus must remotely access file sys-
tem 210A, e.g., through a Common Internet File System
(CIFS) interface or a Network File System (NFS) interface.
All file system requests from virtual machine 220 must be
funneled through the remote file system interface provided
by UNC file system driver 222 and file system service 232.

In one embodiment, the remote file system interface can
use shared memory, which is very fast, as the remote file
system interface is on a single physical computer 102. In
other embodiments, the remote file system interface uses a
network interface, a paravirtualizaton/enlightenment tech-
nique, and/or a hypercall technique or combinations thereof.
In yet another embodiment, hardware can assist or accelerate
the transfer of data.

In one embodiment, UNC file system driver 222 uses a
common syntax to describe the location of resources, e.g.,
files, within file system 210A. Illustratively, the UNC syntax
used is \\computername\sharedfolder\resource, wherein
computername is the name of virtual machine 230, shared-
folder is a folder within file system 210A, and resource is the
particular file desired. Although one syntax is set forth, any
uniform naming convention to identify resources can be
used.

More generally, UNC file system driver 222 packages file
system requests from virtual machine 220 to form a pack-
aged file system request according to the communication
protocol used. UNC file system driver 222 sends the pack-
aged file system request. The packaged file system request is
received by virtual machine monitor 214, which forwards
the packaged file system request to virtual machine 230, if
allowed.

Upon receipt by virtual machine 230, the packaged file
system request is unpackaged by file system service 232.
The unpackaged file system request is passed to security
application 234, which in turn, passes the unpackaged file
system request to file system 210A, if allowed. Alternatively,

US 9,450,960 B1

7

the unpackaged file system request is passed directly to file
system 210A depending upon the particular file system
request.

File system 210A returns the file system request result to
security application 234, which in turn, passes the file
system request result to file system service 232, if allowed.
Alternatively, the file system request result is passed directly
to file system service 232 depending upon the particular file
system request result.

File system service 232 packages the file system request
results from virtual machine 230 to form a packaged file
system request result according to the communication pro-
tocol used. File system service 232 sends the packaged file
system request result.

The packaged file system request result is received by
virtual machine monitor 214, which returns the packaged
file system request result to virtual machine 220, if allowed.

Upon receipt by virtual machine 220, the packaged file
system request result is unpackaged by UNC file system
driver 222. The unpackaged file system request result is
passed to the operating system of virtual machine 220.

Although file system requests and the related replies
(results), e.g., file system exchanges, are set forth above as
passing through virtual machine monitor 214, in another
embodiment, virtual machine monitor 214 authorizes direct
communication between virtual machine 220 and 230 as
indicated by the dashed connector arrow. Illustratively, the
communication is directly between UNC file system driver
222 and file system service 232.

Tlustratively, virtual machine 230 is similar to a UNC file
server for purposes of how virtual machine 220 interacts
with virtual machine 230 in one example.

Generally, security application 234 resides between file
system 210A and file system service 232. In this manner,
security application 234 intercepts file system exchanges
with file system 210A, evaluates the file system exchanges
to determine whether they are legitimate or malicious, and
takes appropriate action, e.g., allows a valid file system
exchange and takes protective action when a file system
exchange is malicious.

Further, file system 210A is securely protected from any
malicious code executing on virtual machine 220 by the
hardware enforced partitioning between virtual machine 220
and virtual machine 230. More particularly, malicious code
executing on virtual machine 220 can at best attack, and
possibly disable, UNC file system driver 222. However, in
this event, the file system interface between virtual machine
220 and virtual machine 230 is disabled. As a result, the
malicious code on virtual machine 220 has lost all access to
file system 210A, i.e., access to file system 210A is a fail
closed model. This is in contrast to malicious code on virtual
machine 202, which can gain access to the entire file system
210 should security application 208 be defeated or disabled,
as discussed above, which is an example of a fail open model
for access to file system 210.

More particularly, security application 234 is insinuated at
the chokepoint provided by virtual machine 230 to changes
to file system 210A. This allows security application 234 to
inspect changes to file system 210A from the shared and
controlled environment of virtual machine 230 and remain
immune and insulated from the effects of any malicious
code, e.g., rootkits, on virtual machine 220.

In one embodiment, file system 210A is mapped directly
for virtual machine 220. In another embodiment, a read-only
base with copy on write capabilities is provided.

In yet another embodiment, virtual machine 230 provides
remote file system 210A for a plurality of virtual machines

10

15

20

25

30

35

40

45

50

55

60

65

8
220A, 220B, . . ., 220# of virtual machine architecture 140.
Each of virtual machines 220A, 2208, . . ., 220 are similar
to virtual machine 220 and include a UNC file system driver
222. In this manner, a single security application 234 is
provided for a plurality of virtual machines 220, 220A,
220B, . . ., 220% thus minimizing overhead as compared to
providing each virtual machine with a security application.

Further, by providing a remote file system 210A for
virtual machines 220A, 220B, . . ., 220#, virtual machine
230 provides a single-instance storage capability in one
embodiment. A single-instance storage capability is the
capability of remote file system 210A to keep one copy of
content for virtual machines 220A, 220B, . . . , 220x. This
increases efficiency as compared to each virtual machine
220A, 220B, . . ., 220# storing a separate copy of the
content.

In one particular embodiment, remote file system 210A is
shared by virtual machines 220A, 220B, . . ., 220r with
changes stored for each virtual machine 220A, 220B, . . .,
220n. For example, a “test version” of an environment can
be booted and all writes go to remote file system 210A and
can be sandboxed and later deleted. In another embodiment,
virtual machines 220A, 220B, . . ., 220% boot from the same
master files in remote file system 210A with changes, such
as registry and users settings, being persistently stored and
returned as needed.

In yet another embodiment, instead of being within virtual
machine 230, security application 234 is within another
virtual machine, herein referred to as a security application
virtual machine, separate from virtual machines 220, 230.
File system requests from virtual machine 220 are routed to
the security application virtual machine, and, if allowed,
from the security application virtual machine to virtual
machine 230 and vice versa. In yet another embodiment,
various functionality of virtual machine 230 are incorpo-
rated directly into virtual machine monitor 214.

FIG. 3 is a flow diagram of a virtual machine input/output
(I/0) redirection process 300 in accordance with one
embodiment. Referring now to FIGS. 1, 2 and 3 together,
execution of virtual machine file system content protection
application 106 by processor 108 results in the operations of
virtual machine I/O redirection process 300 as described
below in one embodiment.

From an ENTER OPERATION 302, flow moves to a
VIRTUAL MACHINE BOOTING CHECK OPERATION
304. In VIRTUAL MACHINE BOOTING CHECK
OPERATION 304, a determination is made as to whether a
virtual machine is booting. As is well known to those of skill
in the art, booting is a bootstrapping process that starts the
operating system of the virtual machine when the virtual
machine is created.

If a virtual machine is not booting, flow remains a
VIRTUAL MACHINE BOOTING CHECK OPERATION
304. Conversely, if a virtual machine is booting, flow moves
from VIRTUAL MACHINE BOOTING CHECK OPERA-
TION 304 to a REDIRECT BOOTING TO REMOTE FILE
SYSTEM OPERATION 306.

For purposes of illustration, assume the case where virtual
machine 220 is booting and virtual machine 230 includes
remote file system 210A for virtual machine 220 as
described above. In one embodiment, virtual machine 230,
sometimes called a first virtual machine, is created prior to
booting of any virtual machine that will use remote file
system 210A. In another embodiment, upon a determination
that virtual machine 220, sometimes called a second virtual
machine, is booting, virtual machine 230 is created.

US 9,450,960 B1

9

In REDIRECT BOOTING TO REMOTE FILE SYSTEM
OPERATION 306, booting of the virtual machine is redi-
rected to the remote file system. In one embodiment, a
protocol similar to a network booting protocol is used to
redirect the booting to the remote file system. As those of
skill in the art will understand in light of this disclosure,
network booting is the process of booting a computer from
a network rather than a local drive. In accordance with this
embodiment, instead of loading the boot block across a
network, the boot block is loaded from virtual machine 230.

Tlustratively, virtual machine 220 includes a version of
Windows® that can boot entirely from a network, such as,
for example, network booting versions of Windows® Server
or Vista Enterprise. However, instead of booting across a
network, booting is redirected to a boot block in virtual
machine 230.

In one particular embodiment, an environment similar to
a Preboot eXecution Environment (PXE, also known as
Pre-Execution Environment or “pixie”) is used to boot
virtual machine 220 from virtual machine 230. PXE is an
environment to boot computers using a network interface
independent of the available data storage devices like hard
disks, i.e., network booting. See for example, Sobel et al.,
U.S. patent application Ser. No. 12/059,817, entitled
“SIMULATING PXE BOOTING FOR VIRTUALIZED
MACHINES”, filed on Mar. 31, 2008, which is herein
incorporated by reference in its entirety.

FIG. 4 is a block diagram of a boot sequence 400 used in
REDIRECT BOOTING TO REMOTE FILE SYSTEM
OPERATION 306 of virtual machine I/O redirection process
300 of FIG. 3 in accordance with one embodiment. Refer-
ring now to FIGS. 1, 2, 3 and 4 together, boot sequence 400
initially includes loading of a BIOS (Basic Input/Output
System) 402 of virtual machine 220. The primary function
of BIOS 402 is to identify and initiate, i.e., load and transfer
control to, a boot block 404, sometimes called a boot sector.
Iustratively, boot block 404 is located within remote file
system 210A of virtual machine 230 although could be
located within virtual machine monitor 214 or elsewhere.

Boot block 404, e.g., boot files therein, in turn identifies
and initiates a loader 406. Loader 406 loads the operating
system of the virtual machine 220 including UNC file
system driver 222. Accordingly, from REDIRECT BOOT-
ING TO REMOTE FILE SYSTEM OPERATION 306, flow
moves to a CAUSE ALL INPUT/OUTPUT (I/O) TO BE
REDIRECTED TO REMOTE FILE SYSTEM OPERA-
TION 308 where all input/output of virtual machine 220 is
redirected to virtual machine 230 by UNC file system driver
222. From CAUSE ALL I/O TO BE REDIRECTED TO
REMOTE FILE SYSTEM OPERATION 308, flow moves
to and exits at EXIT OPERATION 310.

In another embodiment, in addition to BIOS 402, one or
more of the functions of boot block 404, loader 406 and
UNC file system driver 222 can be installed into virtual
machine 220 at boot time. However, this involves more
modification to the boot sequence of virtual machine 220,
which may be undesirable depending upon the particular
virtual machine and ability to modify the same.

FIG. 5 is a flow diagram of a virtual machine protection
process 500 in accordance with one embodiment. Referring
now to FIGS. 1, 2 and 5 together, execution of virtual
machine file system content protection application 106 by
processor 108 results in the operations of virtual machine
protection process 500 as described below in one embodi-
ment.

From an ENTER OPERATION 502, flow moves to a
FILE SYSTEM CHANGE REQUEST BY VIRTUAL

5

10

15

20

25

30

35

40

45

50

55

60

65

10

MACHINE CHECK OPERATION 504. In FILE SYSTEM
CHANGE REQUEST BY VIRTUAL MACHINE CHECK
OPERATION 504, a determination is made as to whether a
virtual machine has requested a file system change, i.e.,
made a file system change request. If a file system change
request has not been made, flow remains at FILE SYSTEM
CHANGE REQUEST BY VIRTUAL MACHINE CHECK
OPERATION 504. Conversely, if a file system change
request has been made, flow moves to a FILE SYSTEM
CHANGE ALLOWED CHECK OPERATION 506.

Tustratively, virtual machine 220 requests a change of
file system 210A on virtual machine 230. This file system
change request is intercepted by security application 234.

In FILE SYSTEM CHANGE ALLOWED CHECK
OPERATION 506, a determination is made as to whether the
requested file system change is allowed or not. If the
requested file system change is allowed, i.e., is determined
not to be malicious, flow moves from FILE SYSTEM
CHANGE ALLOWED CHECK OPERATION 506 to an
ALLOW FILE SYSTEM CHANGE REQUEST OPERA-
TION 510. In ALLOW FILE SYSTEM CHANGE
REQUEST OPERATION 510, the file system change
request is allowed, i.e., passed to file system 210A. From
ALLOW FILE SYSTEM CHANGE REQUEST OPERA-
TION 510, flow moves to and exits at an EXIT OPERA-
TION 512 or returns to FILE SYSTEM CHANGE
REQUEST BY VIRTUAL MACHINE CHECK OPERA-
TION 504 and awaits the next file system change request.

Conversely, if the requested file system change is not
allowed, i.e., is determined to be malicious, flow moves
from FILE SYSTEM CHANGE ALLOWED CHECK
OPERATION 506 to a TAKE PROTECTIVE ACTION
OPERATION 508. In TAKE PROTECTIVE ACTION
OPERATION 508, protective action is taken, e.g., the file
system change request is not allowed or other protective
action taken. In another embodiment, in TAKE PROTEC-
TIVE ACTION OPERATION 508, the file system change is
allowed to occur, but the old file system state is saved,
allowing reversion back to the old file system state and thus
to a known good condition at will.

In one particular example, assume the case where the file
system change request is a file write request to write a file
to file system 210A. The file is scanned by security appli-
cation 234 for known malicious code and is determined to be
malicious, i.e., to contain known malicious code, in FILE
SYSTEM CHANGE ALLOWED CHECK OPERATION
506. Accordingly, the file is not written in TAKE PROTEC-
TIVE ACTION OPERATION 508 preventing the malicious
code from being written to file system 210A. In another
example, the file is scanned by security application 234 for
known malicious code and is determined to be non-mali-
cious, i.e., to not contain known malicious code, in FILE
SYSTEM CHANGE ALLOWED CHECK OPERATION
506. Accordingly, the writing of the file to file system 210A
is allowed in ALLOW FILE SYSTEM CHANGE
REQUEST OPERATION 510.

In another particular example, assume the case where the
file system change request is a file access request to access
a file on file system 210A. The file is scanned by security
application 234 for known malicious code and is determined
to be malicious, i.e., to contain known malicious code, in
FILE SYSTEM CHANGE ALLOWED CHECK OPERA-
TION 506. Accordingly, access to the file is denied in TAKE
PROTECTIVE ACTION OPERATION 508 preventing the
malicious code from being propagated from file system
210A to another location, e.g., virtual machine 220. In
another example, the file is scanned by security application

US 9,450,960 B1

11

234 for known malicious code and is determined to be
non-malicious, i.e., to not contain known malicious code, in
FILE SYSTEM CHANGE ALLOWED CHECK OPERA-
TION 506. Accordingly, access to the file of file system
210A is allowed in ALLOW FILE SYSTEM CHANGE
REQUEST OPERATION 510.

FIG. 6 is a flow diagram of a file system restriction
process 600 in accordance with one embodiment. Referring
now to FIGS. 1, 2 and 6 together, execution of virtual
machine file system content protection application 106 by
processor 108 results in the operations of file system restric-
tion process 600 as described below in one embodiment.

From an ENTER OPERATION 602, flow moves to an
UNKNOWN MALICIOUS CODE OUTBREAK CHECK
OPERATION 604. In UNKNOWN MALICIOUS CODE
OUTBREAK CHECK OPERATION 604, a determination is
made as to whether there is an unknown malicious code
outbreak, sometimes called a new virus outbreak. In one
embodiment, unknown malicious code, sometimes called a
threat, is malicious code for which a malicious code signa-
ture, sometimes called a virus signature, has not been
created. As those of skill in the art will understand in light
of this disclosure, a malicious code signature is used by
security application 234 to find malicious code patterns
inside of files by scanning the files for the malicious code
signature. In one specific example, a malicious code signa-
ture is a characteristic byte-pattern that is part of certain
malicious code. Typically, several malicious code signatures
are stored as a virus definition file.

Unfortunately, malicious code must be captured and then
analyzed to create the malicious code signature. Thus, there
is typically a significant delay between the emergence of
new unknown malicious code, i.e., an unknown malicious
code outbreak, and the creation of the associated malicious
code signature. An outbreak of unknown malicious code is
a sudden increase in the number of computer systems
infected with the unknown malicious code typically during
the early release of the unknown malicious code into the
wild.

Once a malicious code signature is created for malicious
code, the malicious code is no longer unknown malicious
code, but is known malicious code. Accordingly, in
UNKNOWN MALICIOUS CODE OUTBREAK CHECK
OPERATION 604, a determination is made as to whether
there is an outbreak of unknown malicious code for which
a malicious code signature has not been created.

If a determination is made that there is not an unknown
malicious code outbreak, flow remains at UNKNOWN
MALICIOUS CODE OUTBREAK CHECK OPERATION
604. Conversely, upon a determination that there is an
unknown malicious code outbreak, flow moves to a
DETERMINE UNKNOWN MALICIOUS CODE CHAR-
ACTERISTICS OPERATION 606.

In one embodiment, upon an unknown malicious code
outbreak, an unknown malicious code outbreak report is
issued, e.g., from a security company, a news reporter, or
other reputable source. In one particular embodiment, a
malicious code outbreak report is issued from unknown
malicious code outbreak reporting server system 150 and
received by host computer system 102.

In another embodiment, an unknown malicious code
outbreak report is issued and an administrator and/or user of
host computer system 102 receives the unknown malicious
code outbreak report.

The unknown malicious code outbreak report contain
actionable descriptions, sometimes called unknown mali-
cious code characteristics, of the fast moving unknown

10

15

20

25

30

35

40

45

50

55

60

65

12

malicious code prior to having a complete description and
corresponding malicious code signature for the unknown
malicious code (at which point the malicious code would be
known malicious code). These actionable descriptions of the
unknown malicious code define the unknown malicious
code characteristics which are used by security application
234 to protect file system 210A, i.e., to restrict file access/
writing to file system 210A.

Accordingly, upon receipt of an unknown malicious code
outbreak report, a determination is made that there is an
unknown malicious code outbreak, and flow moves to
DETERMINE UNKNOWN MALICIOUS CODE CHAR-
ACTERISTICS OPERATION 606. In DETERMINE
UNKNOWN MALICIOUS CODE CHARACTERISTICS
OPERATION 606, the characteristics, i.e., at least one
characteristic, of the unknown malicious code are deter-
mined. Generally, a characteristics is distinguishing trait,
quality, or property, sometimes called attribute, of the
unknown malicious code. A characteristic specifically
excludes a malicious code signature, as once a malicious
code signature is created the malicious code is no longer
unknown malicious code, but known malicious code.

Examples of characteristics include: (1) the outbreak time
period, e.g., the date and/or time of emergence of the
unknown malicious code; (2) the unknown malicious code
file type, e.g., the type of file containing the unknown
malicious code; (3) the unknown malicious code source,
e.g., the source of the unknown malicious code; (4) the
unknown malicious code file name, e.g., the file name of the
file containing the unknown malicious code; (5) the
unknown malicious code file size, e.g., the file size of the file
containing the unknown malicious code.

In one embodiment, the outbreak time period is the time
period from the first emergence of the unknown malicious
code to the present time. The first emergence of the unknown
malicious code is sometimes called the unknown malicious
code emergence time and is usually expressed as a date and
time.

Any files created or modified prior to the outbreak time
period will not contain, or at least are highly unlikely of
containing, the unknown malicious code and are deemed
un-suspect, i.e., not suspect of containing the unknown
malicious code. Conversely, any files created or modified
during the outbreak time period may contain the unknown
malicious code and may be deemed suspect, i.e., suspect of
containing the unknown malicious code.

In one embodiment, the unknown malicious code file type
is the type of file containing the unknown malicious code.
For example, the unknown malicious code file type is any
executable file, e.g., a .EXE file, a .COM file, a browser help
object file, or an ActiveX control file. In another example,
the unknown malicious code file type is any macro contain-
ing file, for example, a non-executable file containing mac-
ros. In another example, the unknown malicious code file
type is any file, e.g., executable or non-executable, contain-
ing malformed content, e.g., content that does not conform
to the content expected for the particular type of file. For
example, JPEG or TIFF files containing malformed content
are examples of unknown malicious code file types in one
embodiment.

Any files not having the unknown malicious code file type
will not contain, or at least are highly unlikely of containing,
the unknown malicious code and are deemed un-suspect,
i.e., not suspect of containing the unknown malicious code.
Conversely, any files having the unknown malicious code

US 9,450,960 B1

13

file type may contain the unknown malicious code and may
be deemed suspect, i.e., suspect of containing the unknown
malicious code.

The unknown malicious code source is the source of the
unknown malicious code. In one embodiment, the unknown
malicious code source includes the particular Internet sites
from which the unknown malicious code is downloaded. For
example, if the unknown malicious code is originating from
servers located in a particular foreign country, the unknown
malicious code source includes servers located in the par-
ticular foreign country. In another embodiment, the
unknown malicious code source is the Internet regardless of
where the computer system from which the file is being
downloaded is located. In another embodiment, the
unknown malicious code source includes file share servers.

Any files not originating from the unknown malicious
code source will not contain, or at least are highly unlikely
of containing, the unknown malicious code and are deemed
un-suspect, i.e., not suspect of containing the unknown
malicious code. Conversely, any files originating from the
unknown malicious code source may contain the unknown
malicious code and may be deemed suspect, i.e., suspect of
containing the unknown malicious code.

The unknown malicious code file name is the file name of
the file containing the unknown malicious code. In one
embodiment, the unknown malicious code has a unique file
name, which is the unknown malicious code file name. In
another embodiment, the unknown malicious code file name
is similar or identical to a common non-malicious file in an
attempt to disguise the unknown malicious code file name.

Any files not having the unknown malicious code file
name will not contain, or at least are highly unlikely of
containing, the unknown malicious code and are deemed
un-suspect, i.e., not suspect of containing the unknown
malicious code. Conversely, any files having the unknown
malicious code file name may contain the unknown mali-
cious code and may be deemed suspect, i.e., suspect of
containing the unknown malicious code.

The unknown malicious code file size is the file size of the
file containing the unknown malicious code. Any files not
having the unknown malicious code file size, especially
those files that are smaller than the unknown malicious code
file size, will not contain, or at least are highly unlikely of
containing, the unknown malicious code and are deemed
un-suspect, i.e., not suspect of containing the unknown
malicious code. Conversely, any files having the unknown
malicious code file size may contain the unknown malicious
code and may be deemed suspect, i.e., suspect of containing
the unknown malicious code.

Some examples of characteristics for unknown malicious
code are set forth in Nachenberg et al., US Pub. No.
2003/0088680, entitled “TEMPORAL ACCESS CON-
TROL FOR COMPUTER VIRUS PREVENTION”, pub-
lished on May 8, 2003, which is herein incorporated by
reference in its entirety.

In one embodiment, DETERMINE UNKNOWN MALI-
CIOUS CODE CHARACTERISTICS OPERATION 606 is
repeatedly performed. For example, as updated malicious
code outbreak reports are issued having updated information
about the characteristics of the unknown malicious code, the
malicious code characteristics are updated.

From DETERMINE UNKNOWN MALICIOUS CODE
CHARACTERISTICS OPERATION 606, flow moves to a
RESTRICT ACCESS TO FILES HAVING ATTRIBUTES
MATCHING UNKNOWN MALICIOUS CODE CHAR-
ACTERISTICS OPERATION 608. In RESTRICT ACCESS
TO FILES HAVING ATTRIBUTES MATCHING

25

30

35

40

45

55

14

UNKNOWN MALICIOUS CODE CHARACTERISTICS
OPERATION 608, access to files having attributes matching
the unknown malicious code characteristics is restricted.
Recall that the unknown malicious code characteristics were
determined in DETERMINE UNKNOWN MALICIOUS
CODE CHARACTERISTICS OPERATION 606 as
described above.

More particularly, access to files of file system 210A is
restricted by security application 234. For example, a mali-
cious file, i.e., a file containing malicious code, is propagated
from unknown malicious code source server system 160 and
to file system 210A, e.g., during the early stages of the
outbreak of the unknown malicious code before the
unknown malicious code outbreak report is issued. Based on
the matching of the attributes of the malicious file to the
unknown malicious code characteristics, access the mali-
cious file is restricted as discussed further below.

Examples of file attributes of a file being accessed
include: (1) the file creation or modification date and time,
e.g., the date and/or time of creation or modification of the
file such as that set forth in a time stamp of the file; (2) the
file type; (3) the file name; and (4) the file size.

In one embodiment, access to files that were created or
modified during the outbreak time period is restricted. In
another embodiment, access to files that are of the unknown
malicious code file type is restricted. In another embodi-
ment, access to files having the unknown malicious code file
name is restricted. In yet another embodiment, access to files
having the unknown malicious code file size is restricted.

Although access to various files is described as being
restricted based on the file having a single attribute matching
a single malicious code characteristic, in other embodi-
ments, access is restricted based upon more than one attri-
bute matching more than one characteristic. In one embodi-
ment, configurable rules are created for defining the required
correspondence between one or more of the file attributes
and one or more of the unknown malicious code character-
istics to result in a conclusion that a match has occurred.

For example, the unknown malicious code file type is that
the file must be executable and the unknown malicious code
file size specifies that the file must have a size equal to or
greater than a predefined size. In accordance with this
example, access to executable files having a file size equal
to or greater than the predefined size is restricted. However,
access to a non-executable file or a file smaller than the
predefined size is not restricted.

From RESTRICT ACCESS TO FILES HAVING ATTRI-
BUTES MATCHING UNKNOWN MALICIOUS CODE
CHARACTERISTICS OPERATION 608, flow moves to a
RESTRICT WRITING OF FILES HAVING ATTRIBUTES
MATCHING UNKNOWN MALICIOUS CODE CHAR-
ACTERISTICS OPERATION 610. In RESTRICT WRIT-
ING OF FILES HAVING ATTRIBUTES MATCHING
UNKNOWN MALICIOUS CODE CHARACTERISTICS
OPERATION 610, writing of files having attributes match-
ing the unknown malicious code characteristics is restricted.
Recall that the unknown malicious code characteristics were
determined in DETERMINE UNKNOWN MALICIOUS
CODE CHARACTERISTICS OPERATION 606 as
described above.

More particularly, writing of files to file system 210A is
restricted by security application 234. For example, a mali-
cious file, i.e., a file containing malicious code, is being
downloaded from unknown malicious code source server
system 160 and to file system 210A, e.g., at a later stage of
the outbreak of the unknown malicious code and after the
unknown malicious code outbreak report is issued. Based on

US 9,450,960 B1

15

the matching of the attributes of the malicious file to the
unknown malicious code characteristics, writing of the mali-
cious file is restricted as discussed further below.

Examples of file attributes of a file being written include:
(1) the file creation or modification date and time, e.g., the
date and/or time of creation or modification of the file such
as that set forth in a time stamp of the file; (2) the file type;
(3) the file source, e.g., the source from which the file is
being downloaded or written from; (4) the file name; and (5)
the file size.

In one embodiment, writing of any files or files that were
created or modified during the outbreak time period is
restricted. In another embodiment, writing of files that are of
the unknown malicious code file type is restricted. In another
embodiment, writing of files from the unknown malicious
code source is restricted. In another embodiment, writing of
files having the unknown malicious code file name is
restricted. In yet another embodiment, writing of files having
the unknown malicious code file size is restricted.

Although writing of various files is described as being
restricted based on the file having a single attribute matching
a single malicious code characteristic, in other embodi-
ments, writing is restricted based upon the file having more
than one attribute matching more than one characteristic. In
one embodiment, configurable rules are created for defining
the required correspondence between one or more of the file
attributes and one or more of the unknown malicious code
characteristics to result in a conclusion that a match has
occurred.

For example, the unknown malicious code file type is that
the file must be executable and the unknown malicious code
file size specifies that the file must have a size equal to
greater than a predefined size. In accordance with this
example, writing of executable files having a file size equal
to or greater than the predefined size is restricted. However,
writing of a non-executable file or a file smaller than the
predefined size is not restricted.

From RESTRICT WRITING OF FILES HAVING
ATTRIBUTES MATCHING UNKNOWN MALICIOUS
CODE CHARACTERISTICS OPERATION 610, flow
moves to and exits at an EXIT OPERATION 612 or returns
to UNKNOWN MALICIOUS CODE OUTBREAK
CHECK OPERATION 604 and awaits the next unknown
malicious code outbreak.

In one embodiment, upon receipt of an unknown mali-
cious code outbreak report, virtual machine file system
content protection application 106 automatically restricts
access to files and writing of files having attributes matching
the unknown malicious code characteristics as set forth
above in OPERATIONS 608, 610. In another embodiment,
an administrator and/or user of host computer system 102
receives the unknown malicious code outbreak report. The
administrator and/or user of host computer system 102
manually restricts access to file and writing of files having
attributes matching the unknown malicious code character-
istics as set forth above in OPERATIONS 608, 610.

FIG. 7 is a file access restriction process 700 in accor-
dance with one embodiment. Referring now to FIGS. 1, 2,
6 and 7 together, execution of virtual machine file system
content protection application 106 by processor 108 results
in the operations of file access restriction process 700 as
described below in one embodiment.

From an ENTER OPERATION 702, flow moves to a
FILE ACCESS REQUEST CHECK OPERATION 704. In
FILE ACCESS REQUEST CHECK OPERATION 704, a
determination is made as to whether there has been a request
to access a file. If there has not been a file access request,

10

30

40

45

16
flow remains at FILE ACCESS REQUEST CHECK
OPERATION 704. Conversely, upon a file access request,
flow moves from FILE ACCESS REQUEST CHECK
OPERATION 704 to an ACCESS RESTRICTED CHECK
OPERATION 706. Generally, a file access request is
referred to as a file system change request.

As described above, all file access requests, i.e., requests
for access to files of file system 210A, are routed through
security application 234. For example, a file access request
from virtual machine 220 for a file of file system 210A is
received by security application 234. Accordingly, upon
receiving a file access request by security application 234, a
determination is made that there has been a file access
request and flow moves to ACCESS RESTRICTED
CHECK OPERATION 706.

In ACCESS RESTRICTED CHECK OPERATION 706, a
determination is made as to whether access to the requested
file is restricted. Recall that access to files was restricted in
RESTRICT ACCESS TO FILES HAVING ATTRIBUTES
MATCHING UNKNOWN MALICIOUS CODE CHAR-
ACTERISTICS OPERATION 608 as described above. Gen-
erally, the file attributes of the requested file are determined.
Based upon a comparison of the file attributes with the
unknown malicious code characteristics, a determination is
made as to whether access to the requested file is restricted
as discussed above in reference to FIG. 6.

If there is a match between the file attributes and the
unknown malicious code characteristics, a determination is
made that access to the requested file is restricted. Con-
versely, if there is not a match, sometimes called a mis-
match, between the file attributes and the unknown mali-
cious code characteristics, a determination is made that
access to the requested file is not restricted.

If a determination is made that access is restricted in
ACCESS RESTRICTED CHECK OPERATION 706, flow
moves to a TAKE PROTECTIVE ACTION OPERATION
708. In TAKE PROTECTIVE ACTION OPERATION 708,
protective action is taken with regards to the file access
request. In one embodiment, access to the requested file is
denied.

In another embodiment, the requested file is made safe,
and access to the requested file is granted. For example,
macro sections of the requested file are locked or otherwise
made non-accessible and access is then granted to the
requested file. Generally, access is granted to the requested
file in a safe manner, e.g., access to the requested file in any
manner that is dangerous is denied.

In another embodiment, the requested file is quarantined.
Once the malicious code signature for the unknown mali-
cious code is later obtained (at which point the unknown
malicious code becomes known malicious code), the file is
scanned using an antivirus scanner, e.g., of security appli-
cation 234, to determine if the file is malicious or not. If the
file is determined to be non-malicious, access to the file is
granted in one embodiment.

In another embodiment, access to an earlier version of the
file that is known to be non-malicious is granted instead of
access to the file that may contain malicious code. For
example, an attribute of the requested file indicates that the
file was created during the malicious code outbreak period,
i.e., an unknown malicious code characteristic. Accordingly,
in TAKE PROTECTIVE ACTION OPERATION 708,
access to the file is denied. However, existing within file
system 210A is an earlier version of the requested file that
was created prior to the malicious code outbreak period. As
this earlier version was created prior to the malicious code
outbreak period, this earlier version is presumed unsuspi-

US 9,450,960 B1

17

cious of containing the unknown malicious code. Accord-
ingly, access to this earlier version of the file is granted.

From TAKE PROTECTIVE ACTION OPERATION 708,
flow moves to and exits at an EXIT OPERATION 710 or
returns to FILE ACCESS REQUEST CHECK OPERA-
TION 704 and awaits the next file access request.

Returning again to ACCESS RESTRICTED CHECK
OPERATION 706, upon a determination that access to the
requested file is not restricted, flow moves to an ALLOW
ACCESS OPERATION 712. In ALLOW ACCESS OPERA-
TION 712, access to the requested file is allowed, sometimes
called granted.

In accordance with this embodiment, the requested file
does not have attributes matching the malicious code char-
acteristics and thus is not suspected of containing the
unknown malicious code. Accordingly, access is allowed to
the requested file. From ALLOW ACCESS OPERATION
712, flow moves to and exits at EXIT OPERATION 710 or
returns to FILE ACCESS REQUEST CHECK OPERA-
TION 704 and awaits the next file access request.

FIG. 8 is a file write restriction process 800 in accordance
with one embodiment. Referring now to FIGS. 1, 2, 6 and 8
together, execution of virtual machine file system content
protection application 106 by processor 108 results in the
operations of file write restriction process 800 as described
below in one embodiment.

From an ENTER OPERATION 802, flow moves to a
FILE WRITE REQUEST CHECK OPERATION 804. In
FILE WRITE REQUEST CHECK OPERATION 804, a
determination is made as to whether there has been a request
to write a file. If there has not been a file write request, flow
remains at FILE WRITE REQUEST CHECK OPERATION
804. Conversely, upon a file write request, flow moves from
FILE WRITE REQUEST CHECK OPERATION 804 to a
WRITE RESTRICTED CHECK OPERATION 806. Gener-
ally, a file write request is referred to as a file system change
request.

As described above, all file write requests, i.e., requests
for writing of files to file system 210A, are routed through
security application 234. For example, a file write request
from virtual machine 220 to write a file to file system 210A
is received by security application 234. Accordingly, upon
receiving a file write request by security application 234, a
determination is made that there has been a file write request
and flow moves to WRITE RESTRICTED CHECK
OPERATION 806.

In WRITE RESTRICTED CHECK OPERATION 806, a
determination is made as to whether writing of the requested
file is restricted. Recall that writing of files was restricted in
RESTRICT WRITING OF FILES HAVING ATTRIBUTES
MATCHING UNKNOWN MALICIOUS CODE CHAR-
ACTERISTICS OPERATION 610 as described above. Gen-
erally, the file attributes of the file being written are deter-
mined. Based upon a comparison of the file attributes with
the unknown malicious code characteristics, a determination
is made as to whether writing of the file is restricted as
discussed above in reference to FIG. 6.

If there is a match between the file attributes and the
unknown malicious code characteristics, a determination is
made that writing of the file is restricted. Conversely, if there
is not a match, sometimes called a mismatch, between the
file attributes and the unknown malicious code characteris-
tics, a determination is made that writing of the file is not
restricted.

If a determination is made that writing is restricted in
WRITE RESTRICTED CHECK OPERATION 806, flow
moves to a TAKE PROTECTIVE ACTION OPERATION

10

15

20

25

30

35

40

45

50

55

60

18
808. In TAKE PROTECTIVE ACTION OPERATION 808,
protective action is taken with regards to the file write
request. In one embodiment, writing of the requested file is
denied.

In another embodiment, the file is made safe, and writing
of'the file is granted. For example, macro sections of the file
are locked or otherwise made non-accessible and writing of
the file is then granted. Generally, writing of the file is
granted in a safe manner, e.g., writing of the file in any
manner that is dangerous is denied.

In another embodiment, the requested file is written to a
secure storage area and quarantined. Once the malicious
code signature for the unknown malicious code is later
obtained (at which point the unknown malicious code
becomes known malicious code), the file is scanned using an
antivirus scanner, e.g., of security application 234, to deter-
mine if the file is malicious or not. If the file is determined
to be non-malicious, the file is copied from quarantine to the
target location of file system 210A in one embodiment.

From TAKE PROTECTIVE ACTION OPERATION 808,
flow moves to and exits at an EXIT OPERATION 810 or
returns to FILE WRITE REQUEST CHECK OPERATION
804 and awaits the next file write request.

Returning again to WRITE RESTRICTED CHECK
OPERATION 806, upon a determination that writing of the
requested file is not restricted, flow moves to an ALLOW
WRITE OPERATION 812. In ALLOW WRITE OPERA-
TION 812, writing of the requested file is allowed, some-
times called granted.

In accordance with this embodiment, the requested file
does not have attributes matching the malicious code char-
acteristics and thus is not suspected of containing the
unknown malicious code. Accordingly, writing of the
requested file is allowed. From ALLOW WRITE OPERA-
TION 812, flow moves to and exits at EXIT OPERATION
810 or returns to FILE WRITE REQUEST CHECK
OPERATION 804 and awaits the next file write request.

As described above, security application 234 is insinuated
at the chokepoint provided by virtual machine 230 to
changes to file system 210A. This allows security applica-
tion 234 to inspect changes to file system 210A, e.g., access
of files on file system 210A as well as writing of files to file
system 210A, from the shared and controlled environment
of virtual machine 230. The protection of file system 210A
provided by security application 234 is absolute. Accord-
ingly, security application 234 facilitates a simple, conve-
nient, yet extremely secure solution for restricting access to
files and writing of files to file system 210A.

Security application 234 enables reliable and precise
protection of file system 210A from an emerging threat
during the window between the release of the threat and the
delivery of the virus signature for the threat. More particu-
larly, security application 234 restricts access to and writing
of files to file system 210A having attributes matching
characteristics of the threat. The more that is known about
the threat, the more precise are the restrictions placed upon
file system 210A thus reducing the impact on users of file
system 210A to an absolute minimum.

Referring again to FIG. 1, virtual machine file system
content protection application 106 is in computer memory
114. As used herein, a computer memory refers to a volatile
memory, a non-volatile memory, or a combination of the
two.

Although virtual machine file system content protection
application 106 is referred to as an application, this is
illustrative only. Virtual machine file system content protec-
tion application 106 should be capable of being called from

US 9,450,960 B1

19

an application or the operating system. In one embodiment,
an application is generally defined to be any executable
code. Moreover, those of skill in the art will understand that
when it is said that an application or an operation takes some
action, the action is the result of executing one or more
instructions by a processor.

While embodiments have been described for a client-
server configuration, an embodiment may be carried out
using any suitable hardware configuration or means involv-
ing a personal computer, a workstation, a portable device, or
a network of computer devices. Other network configura-
tions other than client-server configurations, e.g., peer-to-
peer, web-based, intranet, internet network configurations,
are used in other embodiments.

Herein, a computer program product comprises a tangible
storage medium configured to store or transport computer
readable code in accordance with an embodiment. Some
examples of computer program products are CD-ROM
discs, DVDs, ROM cards, floppy discs, magnetic tapes,
computer hard drives, and servers on a network.

As illustrated in FIG. 1, this medium may belong to the
computer system itself. However, the medium also may be
removed from the computer system. For example, virtual
machine file system content protection application 106 may
be stored in memory 136 that is physically located in a
location different from processor 108. Processor 108 should
be coupled to the memory 136. This could be accomplished
in a client-server system, or alternatively via a connection to
another computer via modems and analog lines, or digital
interfaces and a digital carrier line.

More specifically, in one embodiment, host computer
system 102 and/or server system 130 is a portable computer,
a workstation, a two-way pager, a cellular telephone, a
digital wireless telephone, a personal digital assistant, a
server computer, an Internet appliance, or any other device
that includes components that can execute the virtual
machine file system content protection functionality in
accordance with at least one of the embodiments as
described herein. Similarly, in another embodiment, host
computer system 102 and/or server system 130 is comprised
of multiple different computers, wireless devices, cellular
telephones, digital telephones, two-way pagers, or personal
digital assistants, server computers, or any desired combi-
nation of these devices that are interconnected to perform,
the methods as described herein.

In view of this disclosure, the virtual machine file system
content protection functionality in accordance with one
embodiment can be implemented in a wide variety of
computer system configurations. In addition, the virtual
machine file system content protection functionality could
be stored as different modules in memories of different
devices.

For example, virtual machine file system content protec-
tion application 106 could initially be stored in server
system 130, and then as necessary, a portion of virtual
machine file system content protection application 106 could
be transferred to host computer system 102 and executed on
host computer system 102. Consequently, part of the virtual
machine file system content protection functionality would
be executed on processor 134 of server system 130, and
another part would be executed on processor 108 of host
computer system 102. In view of this disclosure, those of
skill in the art can implement various embodiments in a
wide-variety of physical hardware configurations using an
operating system and computer programming language of
interest to the user.

15

25

35

40

45

50

55

65

20

In yet another embodiment, virtual machine file system
content protection application 106 is stored in memory 136
of server system 130. Virtual machine file system content
protection application 106 is transferred over network 124 to
memory 114 in host computer system 102. In this embodi-
ment, network interface 138 and I/O interface 110 would
include analog modems, digital modems, or a network
interface card. If modems are used, network 124 includes a
communications network, and virtual machine file system
content protection application 106 is downloaded via the
communications network.

This application is related to Sobel et al., U.S. patent
application Ser. No. 12/059,622, entitled “virtual machine
file system content protection system and method”, filed on
Mar. 31, 2008, which is herein incorporated by reference in
its entirety.

This disclosure provides exemplary embodiments. The
scope is not limited by these exemplary embodiments.
Numerous variations, whether explicitly provided for by the
specification or implied by the specification or not, may be
implemented by one of skill in the art in view of this
disclosure.

What is claimed is:

1. A computer-implemented method comprising:

executing a host operating system on a host computing
system,

creating a first virtual machine within the host operating
system, the first virtual machine comprising:
a remote file system;
a file system service; and
a security application between said remote file system

and said file system service;

creating a second virtual machine within the host oper-
ating system of the host computing system, the second
virtual machine comprising a Uniform Naming Con-
vention (UNC) file system driver of the second virtual
machine configured to cause all input/output operations
processed in a kernel mode from said second virtual
machine to be redirected to said remote file system of
the first virtual machine via the security application of
the first virtual machine, wherein the input/output
operations are processed in a user mode in said remote
file system;

booting said second virtual machine, wherein said booting
said second virtual machine comprises loading a boot
block from said first virtual machine and redirecting
booting of said second virtual machine to said remote
file system;

determining, upon an outbreak of unknown malicious
code, at least one unknown malicious code character-
istic, wherein the unknown malicious code character-
istic comprises at least one file attribute comprising at
least one of an outbreak time period, a file type, a
source, a file name, and a file size; and

restricting, by the security application of the first virtual
machine, access of said second virtual machine to said
remote file system, wherein the restricting is performed
based on the determined unknown malicious code
characteristic, wherein the restricting is further per-
formed based on configured rules relating the at least
one file attribute and the unknown malicious code
characteristic.

2. The computer-implemented method of claim 1 further

comprising:

determining whether there has been a request to access a

file of said remote file system from said second virtual

US 9,450,960 B1

21

machine, wherein upon a determination that there has
been said request to access said file; and
comparing file attributes of said file to unknown malicious
code characteristics of said unknown malicious code,
wherein upon a match between said file attributes and
said unknown malicious code characteristics, said
method further comprising taking protective action.
3. The computer-implemented method of claim 1 further
comprising:
determining whether there has been a request to access a
file of said remote file system from said second virtual
machine, wherein upon a determination that there has
been said request to access said file; and
comparing file attributes of said file to unknown malicious
code characteristics of said unknown malicious code,
wherein upon a mismatch between said file attributes
and said unknown malicious code characteristics, said
method further comprising allowing said access to said
file.
4. The computer-implemented method of claim 1 further
comprising:
determining whether there has been a request to write a
file to said remote file system from said second virtual
machine, wherein upon a determination that there has
been said request to write said file; and
comparing file attributes of said file to unknown malicious
code characteristics of said unknown malicious code,
wherein upon a match between said file attributes and
said unknown malicious code characteristics, said
method further comprising taking protective action.
5. The computer-implemented method of claim 1 further
comprising:
determining whether there has been a request to write a
file to said remote file system from said second virtual
machine, wherein upon a determination that there has
been said request to write said file; and
comparing file attributes of said file to unknown malicious
code characteristics of said unknown malicious code,
wherein upon a mismatch between said file attributes
and said unknown malicious code characteristics, said
method further comprising allowing said writing of
said file.

5

10

15

20

25

30

35

40

22

6. A computer-program product comprising a nontransi-
tory computer readable storage medium containing com-
puter program code which when executed by one or more
computing processors performs a process comprising:

executing a host operating system on a host computing

system,

creating a first virtual machine within the host operating

system, the first virtual machine comprising:

a remote file system;

a file system service; and

a security application between said remote file system
and said file system service;

creating a second virtual machine within the host oper-

ating system of the host computing system, the second
virtual machine comprising a Uniform Naming Con-
vention (UNC) file system driver of the second virtual
machine configured to cause all input/output operations
processed in a kernel mode from said second virtual
machine to be redirected to said remote file system of
the first virtual machine via the security application of
the first virtual machine, wherein the input/output
operations are processed in a user mode in said remote
file system;

booting said second virtual machine, wherein said booting

said second virtual machine comprises loading a boot
block from said first virtual machine and redirecting
booting of said second virtual machine to said remote
file system;

determining, upon an outbreak of unknown malicious

code, at least one unknown malicious code character-
istic, wherein the unknown malicious code character-
istic comprises at least one file attribute comprising at
least one of an outbreak time period, a file type, a
source, a file name, and a file size; and

restricting, by the security application of the first virtual

machine, access of said second virtual machine to said
remote file system, wherein the restricting is performed
based on the determined unknown malicious code
characteristic, wherein the restricting is further per-
formed based on configured rules relating the at least
one file attribute and the unknown malicious code
characteristic.

